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Stress transfer in the fibre fragmentation test
Part III Effect of matrix cracking and interface debonding
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A theoretical stress analysis has been developed for the fibre fragmentation test in the

presence of matrix cracks at sites of fibre breaks. The strain energy release rates for both

matrix cracking and interface debonding are calculated for a carbon fibre/epoxy matrix

composite. By comparing these strain energy release rates with the corresponding specific

fracture resistances, the competition between matrix crack growth and interface debonding

has been studied. The distributions of fibre axial stress and interfacial shear stress obtained

from the present analysis show that the matrix crack substantially reduces the efficiency of

stress transfer from the matrix to the fibre.
1. Introduction
The fibre fragmentation test is now commonly used to
study the fibre/matrix interfacial properties and stress
transfer in fibre composite materials. The test involves
a single fibre embedded completely in a matrix that is
subjected to an axial tension. Load is transferred from
the matrix to the fibre by the interfacial shear stress.
As the applied stress increases, the fibre breaks into
smaller fragments. This process continues until the
axial stress induced in the fibre fragment is no longer
capable of producing further rupture, which is referred
to as the saturation stage. The maximum fibre frag-
ment length obtained at the saturation stage is called
the critical transfer length (C¹¸ ). Early investigation
by Kelly and Tyson [1] provided a simple formula to
correlate the critical transfer length with the average
interfacial shear strength, s, i.e.

C¹¸ "

r*
TS

d

2s
(1)

where r*
TS

is the fibre tensile strength at the critical
length (C¹¸) and d the fibre diameter. The major
underlying assumptions of this model are that the
matrix behaviour is rigidly perfectly plastic and the
fragment lengths at the saturation stage are uniformly
distributed. A modified formula has been proposed

s " K
r*

TS
d

2¸
(2)

where ¸ is the mean fibre fragment length and the
non-dimensional correction factor K is used to take
into account the variation in the fragment length. If
the fibre fragment length is assumed to vary uniformly
between 0.5 C¹¸ and C¹¸, K"0.75 [2]. In addition,
a statistical model has been used to describe the frag-
mentation behaviour [3, 4] and K is related to the
*Author to whom all correspondence should be addressed.

Weibull modulus of the fibre strength distribution.
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Contrary to the conventional assumptions that the
fibre/matrix interface is either perfectly bonded or
completely debonded, several analytical models [5, 6]
have been developed to study stress transfer in the
fibre fragmentation test considering that both bonded
and debonded regions exist simultaneously along the
interface. A new fracture mechanics-based debonding
criterion at the fibre/matrix interface has been recently
proposed [6]. In a recent paper, Liu et al. [7] also
presented a computer simulation study of the fibre
fragmentation test. Fibre breakage is assumed to be
controlled by pre-existing flaws on the fibre surface
when the fracture toughness is exceeded. From the
debonding criterion [6], numerical results of the mean
fibre fragment length and mean fibre debond length
versus applied stress, as affected by the distribution of
the pre-existing flaws, have been calculated for a car-
bon fibre/epoxy matrix composite.

A noteworthy phenomenon in the fibre fragmenta-
tion test, which has been mentioned by many re-
searchers [8—13], is that a small circular matrix crack
often appears around a fibre break (Fig. 1). As the
fibre breaks, a high stress concentration is exerted on
the surrounding matrix, which initiates a small matrix
crack. When the applied stress is increased, the matrix
crack may propagate outwards. Alternatively, an in-
terfacial debond may start along the fibre/matrix in-
terface. Both matrix crack propagation and interface
debonding have been observed in the fibre fragmenta-
tion test. Two important questions arise: (i) what gov-
erns the competition between matrix cracking and
interface debonding, and (ii) how does the matrix
crack affect the stress transfer from the matrix to the
fibre? Gent and Wang [12, 13] investigated the frac-
ture behaviour of resin cracking by both finite-element
analysis and experiments. It was found that even for

the samples with perfect adhesion between the matrix
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Figure 1 A schematic illustration of a fibre fragmentation test
specimen.

resin and fibre, interfacial failure would occur if the
fibre radius was less than about one-fifth the matrix
cylinder radius. For the fibres of large radius, either
fibre pull-out or matrix cracking can take place, the
competition depends on the relative levels of inter-
facial fracture energy and fracture resistance of the
matrix resin. But the effect of the matrix crack on the
stress transfer was not discussed in their work.

The aim of the current work is to present a theoret-
ical analysis of the fibre fragmentation test in the
presence of a matrix crack. The stress distributions in
the fibre, matrix and interface are obtained from the
axisymmetrical cylindrical single fibre composite
model. The strain energy release rates for both the
matrix crack and the interface crack are calculated for
a carbon fibre/epoxy matrix composite. Using the
minimum fracture stress criterion the competition be-
tween matrix cracking and interface debonding is dis-
cussed in terms of the fibre radius and elastic modulus
of the matrix. The effects of thermal residual stress in
both radial and axial directions are also included in
this model. (In the debonded region, because the ther-
mal residual stress in the axial direction is absent, the
thermal residual stress in the radial direction is ex-
pressed by q

0
which is caused by *¹, (in this work q

0
is the experimental datum [6]). In the bonded region,
the radial stresses r r

&
, r r

.1
and r r

.2
are functions of

the axial stresses rz
&
, rz

.1
and rz

.2
(Appendix A)

which are dependent on *¹. So in both the debonded
and bonded regions, r r

&
, rr

.1
and r r

.2
are dependent

on *¹ .)

2. Basic equations
2.1. Stress transfer
To study the stress transfer from the matrix to the
fibre, a fragment of length 2¸ with two initial partially
debonded regions of length 2l is taken as a mechanics
model (Fig. 2). A fibre of radius a is embedded in
a matrix cylinder with radius R. Two initial co-axial
matrix cracks of radius b are present at both ends of
the fragment. For simplicity, it is assumed that both
matrix cracks have the same radius. A set of the
cylindrical coordinates (r, h, z) is selected as shown in
Fig. 2. The average tensile stress, r, caused by the
remote applied stress, r

!
, at each end of the model is

given by

r "

r
!
R2

R2!b2
(3)

Because of the very small radius of the matrix crack
and small area of the disturbed stress field, this aver-
age stress is used as a boundary condition for the
study of stress transfer in the fragment.

In a fibre/matrix fragment, the fibre is embedded in

a relatively large matrix and a uniform load is applied
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Figure 2 A single-fibre model composite with matrix cracks and
partial debonding at the two ends of the fibre fragment.

to each end of the matrix. In most areas of the matrix,
the axial stress can be considered independent of coor-
dinate r. So a basic assumption used here is that the
axial stresses are functions of coordinate z only. The
boundary conditions at the two ends of this model are
given by

rz
&
(z"$¸) " 0 (0)r)a ) (4a)

rz
.

(z"$¸) " 0 (a)r)b) (4b)

rz
.

(z"$¸) " r (b)r)R) (4c)

where the superscript denotes the coordinate direction
and subscripts f and m refer to fibre and matrix respec-
tively. The matrix may be divided into two regions:
matrix (m1) (b)r)R) and matrix (m2) (a)r)b).
Therefore, together with the fibre, a three-concentric-
cylinder model is obtained. The equilibrium condi-
tions are

drz
&

dz
"!

2

a
s
a

(5a)

drz
.1

dz
"

2b

R2!b2
s
b

(5b)

drz
.2

dz
"

2

b2!a2
(as

a
!bs

b
) (5c)

where s
a
and s

b
are the shear stresses at the interfaces

r"a and r"b, respectively. The equilibrium equa-
tion between the axial stress and shear stress in each
cylinder in the z direction is

drz

dz
#

­s rz

­r
#

s rz

r
" 0 (6)

Therefore, in conjunction with Equations 5a—c we
have

srz
.1

"

b

R2!b2 A
R2

r
!rB s

b
(7a)

srz
.2

"

1

b2!a2
[ab (bs

a
!as

b
)
1

r
#(bs

b
!as

a
)r] (7b)

For this fibre/matrix system, the radial displacement
gradient with respect to the z-direction is ignored
compared to the axial displacement gradient with
respect to the r-direction [14], the shear stress can be
approximately expressed as

srz "

E
.

2(1#m
.
)

­uz

­r
(8)

where uz is the displacement in the z direction E and m

are Young’s modulus and Poisson’s ratio, respectively.



Combining Equations 7a, b and 8 and integrating for
each cylinder gives

E
.

2(1#m
.
)
[uz

.1
(R, z)!uz

.1
(b, z)]

"

b

R2!b2AR2 ln
R

b
!

R2!b2

2 Bs
b

(9a)

E
.

2(1#m
.
)
[uz

.2
(b, z)!uz

.2
(a, z)]

"

1

b2!a2Cab (bs
a
!as

b
) ln

b

a

#(bs
b
!as

a
)
b2!a2

2 D (9b)

The relationships between the axial strain, displace-
ment and stress are given by

ez (r, z) "

­uz

­z
"

1

E
Mrz!m[rr (r, z)

#rh (r, z)]N#aT*¹ (10)

where aT*¹ is the axial thermal residual strain and aT

is the coefficient of thermal expansion, *¹ the temper-
ature change. The relationships between the radial,
tangential and axial stresses are shown in Appendix A.
Equilibrium of the fragment requires

rz
.2

"

1

(b2!a2)
[(R2!b2)(r!rz

.1
)!a2rz

&
]

(11)

In the debonded region (¸!l)z)¸ and !¸)

z)!(¸!l )), frictional slip occurs along the debon-
ded length (at r"a) and the shear stress s

a
is governed

by Coulomb’s friction law for a constant friction coef-
ficient, l, so that

s
a
" !l (q

0
#q*) (12)

where q
0

is the thermal residual clamping stress (com-
pressive) in the radial direction [6]. q* (r r

&
(a, z)) is the

additional radial stress at the interface arising from
the differential Poisson contraction between the fibre
and matrix when the matrix is subjected to an axial
tension and is given in Appendix A.

At the interface r"b, the continuity of axial strains
requires

ez
.2

(b, z) " ez
.1

(b, z) (13)

Combining Equations 5a, 11 and 12 yields

drz
&

dz
" g

11
rz

&
#g

12
rz

.1
#g

13
(r#r6 ) (14a)

Differentiation of Equation 9a with respect to z and
combining with Equations 5b, 10 and 11 gives

d2rz
.1

dz2
" g

22
rz

.1
#g

23
r (14b)

where

q b2!a2

r6 " 0

k
3A

R2!b2
(15)
and the parameters K
3A

and g
ij

are given in Appendi-
ces A and B.

From the boundary conditions at two ends of the
fragment, Equations 4a—c, the solutions of the axial
stresses of the fibre and matrix in the debonded region
are given by

rz
&
"

g
12

B*
1

g2
11
!g

22

[(g
11

coshg1@2
22

¸#g1@2
22

sinhg1@2
22

¸)

]e~g
11(L~z )!g

11
cosh g1@2

22
z!g1@2

22
sinh g1@2

22
z )]

!

1

g
11
CAg13

!

g
12

g
23

g
22
Br#g

13
r6 D

](1!e~g
11 (L~z ) ) (16a)

rz
.1

" B*
1

cosh g1@2
22

z!
g
23

g
22

r (16b)

where

B*
1

"

1#(g
23

/g
22

)

coshg1@2
22

¸

r (17)

In the bonded region (!(¸!l))z)¸!l), the
axial strains are required to be continuous at the
interface between the fibre and matrix region m2
(r"a), that is

ez
&
(a, z) " ez

.2
(a, z) (18)

Differentiating Equations 9a and b with respect to
z and combining with Equations 5a—c, 10, 11, 13 and
18 gives the following differential equations for the
axial stresses of fibre and matrix

d2rz
&

dz2
" k

11
rz

&
#k

12
rz

.1
#k

13
r!k

14
rT

(19a)

d2rz
.1

dz2
" k

21
rz

&
#k

22
rz

.1
#k

23
r (19b)

where the parameters k
ij

are given in Appendix C. rT

is an additional stress caused by axial thermal residual
stress and is given by

rT " E
.

*¹aT
. A1!

aT
&

aT
.
B (20)

Solving Equations 19a and b with the boundary
conditions gives the solutions of the axial stresses of
fibre and matrix in the bonded region

rz
&
"

1

k
21

[B*(r2
1
!k

22
)cosh r

1
z

#D* (r2
2
!k

22
)cosh r

2
z#k

&
r!k

22
k
T
rT]

(21a)

rz "B* cosh r z#D* cosh r z#k r#k rT

.1 1 2 . T

(21b)
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in which r
1
, r

2
are given in Appendix C and

k
&
"

k
21

(k
22

k
13
!k

12
k
23

)

k
12

k
21
!k

11
k
22

(22a)

k
.
"!

k
21

k
13
!k

11
k
23

k
12

k
21
!k

11
k
22

(22b)

k
T

"

k
21

k
14

k
12

k
21
!k

11
k
22

(22c)

B*"
1

(r2
2
!r2

1
)cosh r

1
(¸!l )

M(r2
2
!k

22
)r -

.1

!k
21

r -
&
#[k

&
!k

.
(r2

2
!k

22
)]r!r2

2
k
T
rTN
(22d)

D*"

1

(r2
1
!r2

2
) cosh r

2
(¸!l )

M(r2
1
!k

22
)r -

.1

!k
21

r -
&
#[k

&
!k

.
(r2

1
!k

22
)]r!r2

1
k
T
rTN
(22e)

where r -
&
and r -

.1
are the axial stresses at the bound-

ary between the bonded and debonded region, i.e.
r -

&
"rz

&
(¸!l), r -

.1
"rz

.1
(¸!l ) and can be ob-

tained from Equations 16a and b.

2.2. Fracture mechanics analysis of matrix
cracking and interface debonding.

The minimum fracture stress criterion is used to de-
scribe the competition between matrix cracking and
interface debonding. The strain energy release rate, G,
can be calculated by differentiating the total elastic
energy, º, with respect to the area of crack surface, s

G "

­º

­s
(23)

For a linear elastic system, º can be calculated from

º "

1

2EPPP
V

M(rz)2#(rr)2#(rh )2

!2m (rzrr#rzrh
#rrrh)

#2 (1#m) [(srz)2#(szh )2#(srh )2]Nd» (24)

In this case, º can be written as

º " P
2p

0
P

L

0
G

1

E
&
P

a

0

[(rz
&
)2#(r r

&
)2#(rh

&
)2

!2m
&
(rz

&
r r

&
#rz

&
rh

&
#r r

&
rh

&
)] rdr

#

1

E
.
P

b

a

[(rz
.2

)2#(rr
.2

)2#(rh

.2
)2

!2m
.

(rz
.2

rr
.2

#rz
.2

rh

.2
#rr

.2
rh

.2
)

#2(1#m
.
) (srz

.2
)2] rdr

#

1

E
.
P

R

b

[(rz
.1

)2#(r r
.1

)2#(rh

.1
)2

!2m
.

(rz
.1

rr
.1

#rz
.1

rh

.1
#rr

.1
rh

.1
)

#2(1#m
.
) (srz

.1
)2] rdrHdzdh (25)
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in which rz
.2

, srz
.1

and srz
.2

can be obtained by com-
bining Equations 5a—c, 7a, b, 11 and 16a, b and
19a,b. r r

.1
, rh

.1
and r r

.2
, rh

.2
can be solved from

Appendix A.
In fibre fragmentation tests, a matrix crack of initial

size b may initiate immediately after the fibre breaks.
Prior to interface debonding, the strain energy release
rate, G

b
, for the matrix crack can be obtained from

Equations 23 and 25, with s"p (b2!a2 ), i.e.

G
b
"

1

2pbA
­º

­bB
l/0

(26)

With the interface debond (s"4pal ), the strain energy
release rate for interface debonding G

l
is [15]

G
l
"

1

4paA
­º
­l B

lP0

(27)

where the debond length l approaches zero is used to
describe the initiation of interface debonding.

If G#
b

and G#
l

are used to represent the specific
fracture resistances of the matrix and interface, respec-
tively, as the applied stress is increased, both the strain
energy release rates for the matrix crack, G

b
, and the

interfacial crack, G
l
, increase. For a given applied

stress r
!
, when G

b
*G#

b
, the matrix crack propagates

outwards leading to matrix fracture. But if G
b
(G#

b
and G

l
*G#

l
, there is no matrix cracking, an interface

debond occurs and propagates along the interface
from the broken end of the fibre. Substituting the
stress components determined in the previous section
into Equations 25—27, the strain energy release rates
for both matrix crack, G

b
, and interface debond, G

l
,

can be obtained. Whether matrix cracking or interface
debonding occurs first can be determined by compar-
ing the strain energy release rates with the correspond-
ing fracture resistances at any given applied stress, r

!
,

which is equivalent to the minimum fracture stress
criterion [16].

3. Numerical examples and discussion
Numerical results are calculated for a carbon
fibre/epoxy matrix system, of which the elastic proper-
ties of the constituents and the interfacial properties
are given in Table I. The length of the fibre fragment is
taken as 1 mm (longer or shorter fragment lengths can
be used in these numerical examples provided that
they are larger than the saturation CTL. In the carbon
fibre/epoxy composite chosen the CTL is about
0.5 mm [6]). In all the figures shown, the ratio of the
matrix crack radius to the fibre radius b/a is used as
a dimensionless matrix crack radius.

The variation of fibre axial stress and interfacial
shear stress is plotted as a function of the axial dis-
tance along the fibre in Fig. 3a and b. The applied
stress is fixed at r

!
"0.1 GPa. The stress distributions

are only given for the half length of the fragment
because the stresses are symmetrical about the plane
z"0. In both figures the interface is fully bonded and
the curve b/a"1 represents the condition of no
matrix crack. It can be clearly seen that the stress

distributions are highly dependent on the matrix crack



TABLE I Fibre, matrix and interface characteristics [6, 17] and
*¹"!100 °C

Fibre Young’s modulus, E
&
(GPa) 230

Poisson’s ratio, m
&

0.2
Radius, a (mm) 0.003
Thermal expansion coefficient, !0.99
aT
&
(10~6 °C~1)

Matrix Young’s modulus, E
.

(GPA) 3
Poisson’s ratio, m

.
0.4

Radius, R (mm) 2.5
Thermal expansion coefficient, 65
aT
.

(10~6 °C~1)
Fracture resistance, G#

b
( Jm~2) 500

Interface Residual clamping stress, q
0

(MPa) !8.4
Frictional coefficient, l 0.8
Fracture resistance, G#

l
(Jm~2) 13

Figure 3 The distributions of (a) fibre axial stress, rz
&
, (b) inter-

facial shear stress, s
!
, in the half-fragment. The ratio b/a denotes the

dimensionless matrix crack radius. r
!
"0.1 GPa.

radius. When the matrix crack radius increases, the
maximum values of both fibre axial stress and inter-
facial shear stress decrease. In Fig. 4, the maximum
fibre axial stress, r , is given as a function of the
&,.!9
fibre length, where the dimensionless matrix crack
Figure 4 The maximum fibre axial r
&,.!9

as a function of the fibre
fragment length for different matrix crack radius b/a. r

!
"0.1 GPa.

radii are 1, 10 30 and 50. For each case, r
&,.!9

de-
creases with the matrix crack radius. The fibre breaks
when the maximum fibre axial stress reaches the fibre
tensile strength, r

TS
. So if a large matrix crack appears

after fibre breakage, a greater applied stress is required
to cause a new fibre break. Because the matrix cracks
appear at the ends of the fragment, as shown in Fig. 4,
for the shorter fibre fragment, the effect of matrix
crack on the maximum fibre axial stress is more signif-
icant. From Figs 3a, b and 4, it is found that in the
fibre fragmentation test, a matrix crack which is in-
itiated by a fibre break can reduce the efficiency of
stress transfer from the matrix to the fibre, and conse-
quently, affect the behaviour of subsequent fibre
breaks.

The strain energy release rates of the matrix crack,
G

b
, and the interface crack, G

l
, as a function of applied

stress, r
!
, are shown in Fig. 5a and b. In these figures,

G
b
and G

l
are significantly dependent on the radius of

the matrix crack. However, G
b

increases but G
l
de-

creases with b/a at any given applied stress. By the
theory of fracture mechanics, crack propagation oc-
curs when its strain energy release rate exceeds the
specific fracture resistance. In this work, the specific
fracture resistances of the matrix, G#

b
, and interface,

G#
l
, are assumed to be 500 Jm~2 [17] and 13 Jm~2

[6], respectively. The competition between matrix
cracking and interface debonding is shown in
Fig. 6a—c where r

!, *1
, r

!,.1
are the applied stress level

corresponding to interface debonding and matrix
cracking, respectively. From Fig. 6a, in which
E
.
"3 GPa, a"0.003 and 0.03 mm, it is shown that

r
!,.1

decreases but r
!, *1

increases with increasing
matrix crack size. For the fibre of radius 0.003 mm,
when the ratio b/a is smaller than 15, the applied stress
required for interface debond initiation, r

!, *1
, is

smaller than that for matrix cracking, r
!,.1

. Hence, in-
terface debonding occurs before the matrix crack prop-
agates. However, for b/a'15, r

!,.1
is smaller than

r , matrix fracture therefore occurs before interface

!, *1

debonding. For the large fibre of radius 0.03 mm,
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Figure 5 Strain energy release rate of (a) matrix crack G
"
, and

(b) interface crack G
l
versus applied stress r

!
for different radius of

matrix crack b/a. In (a), curve b/a"1 represents the case in which
the initial matrix crack size is very small, i.e. b approaches a.

when b/a(4.5, r
!, *1

(r
!,.1

, interface debonding oc-
curs first. But for b/a'4.5, r

!, *1
'r

!,.1
, matrix

cracking commences before interface debonding.
Fig. 6b shows the competition between matrix crack-
ing and interface debonding for a softer matrix resin,
E
.
"2 GPa. If b/a(21, r

!, *1
(r

!,.1
, interface de-

bonding occurs first, and when b/a'21, matrix crack
propagates before interface debonding. Fig. 6a and
b show that the transition b/a ratio from interface
debonding to matrix cracking is determined by geo-
metrical and material parameters of the fibre and
matrix resin. As shown by Gent and Wang [12, 13],
and in Fig. 6a, for very large radius of the fibre, matrix
cracking may be the only failure mode with no inter-
face debonding. (For example, if a"0.15 mm r

!, *1
is

always higher than r
!,.1

even if b/a approaches 1.)
The effect of residual thermal stress on the competi-
tion between matrix cracking and interface debonding
is shown in Fig. 6c. Residual thermal stress increases

r
!, *1

but it has no effect on r
!,.1

. Consequently, the

638
Figure 6 The applied stress levels corresponding to interface deb-
onding r

!, *1
and matrix cracking r

!,.1
as a function of the dimen-

sionless matrix crack radius b/a for three cases: (a) a" (——) 0.003
and (— ——) 0.03 mm, and E

.
"3 GPa; (b) a"0.003 mm, E

.
"(—— —)

2 and (——) 3 GPa; and (c) a"0.003 mm, E
.
"3 GPa, (——) with

residual thermal stress (*¹"!100 °C) and (— — —) without residual

thermal stress.



transition of the b/a ratio from interface debonding to
matrix cracking is increased from 15 to 19.5 in the
absence of any residual thermal stress. Residual ther-
mal stress therefore reduces the strain energy release
rate for interface debonding and alters the competi-
tion between matrix cracking and interface debon-
ding.

The numerical examples presented above in
Figs 4—6 are only concerned with the competition of
matrix cracking and interface debonding when
a matrix crack of a given size is known. In this paper
we have not yet shown how the mean fragment length
at saturation is affected. To do this, we need to extend
the theoretical analysis on the applied stress required
to continue the interface debonding and compare it
with that required for fibre fragment fracture and that
for matrix cracking. Interpretation of the experimental
data from fibre fragmentation tests to extract
fibre—matrix interface properties is not as straight for-
ward, in the presence of matrix cracking and interface
debonding, as previous models and methods imply
[1—5]. This problem will be dealt with in a future paper.

It is noted that, in the model given in this paper, the
outer cylindrical surface of the matrix (r"R) is only
considered as a free boundary (rr

.
(r"R )"0,

srz
.

(r"R)"0), which corresponds to the single
fibre/matrix composite model. In the case of an alig-
ned fibre-reinforced composite, because the outer cy-
lindrical surface is constrained by the neighbouring
fibres, the boundary conditions are given by
ur
.

(r"R)"0, and srz
.

(r"R)"0. Substituting the
boundary condition u r

.
(r"R)"0 for r r

.
(r"R)"0

in Equation A16 (Appendix A), the coefficients k @
ij

can
be solved. Replacing k

ij
by k@

ij
in the coefficients g

ij
, k

ij
(Appendices B and C) and q*, the solutions of the
stress components obtained in Section 2.1 are also
available for the case of an aligned fibre-reinforced
composite.

4. Conclusion
A theoretical analysis of the effect of matrix crack on
the fibre fragmentation test has been presented. The
competition between matrix cracking and interface
debonding is controlled by the minimum fracture
stress criterion. It is shown that the matrix crack
radius has a significant influence on the strain energy
release rates for both the matrix crack, G

b
, and the

interface crack, G
l
. Therefore, it is one of the most

important factors which control the failure mode in
a fibre fragmentation test. Additionally, the radius of
the fibre, the Young’s modulus of the matrix and the
residual thermal stress have remarkable effects on the
competition between matrix cracking and interface
debonding.

The results of the fibre axial stress and interface
shear stress distributions show that the matrix crack
can reduce substantially the efficiency of stress transfer
from the matrix to the fibre. Therefore, the presence of
matrix cracks initiated by fibre breaks will greatly
affect the fibre fragmentation behaviour and com-
plicate the evaluation of the fibre/matrix interface

properties.
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Appendix A. Coefficients kij

In a single fibre/matrix system considered in
Fig. 2, both the material structure and the applied
load are symmetrical about the z-axis. The stresses
and displacements in each cylinder are given by
[15]

r r
&
" rh

&
" A (A1)

u r
&
"

1!m
&

E
&

Ar!
m
&

E
&

rz
&
r (A2)

r r
.2

"

B

r2
#C (A3)

rh
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E
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r r
.1

"

D
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#E (A6)
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"

D

r2
#E (A7)
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"!

1

E
.
C
1#m

.
r

D!(1!m
.
)ErD!

m
.

E
.

rz
.1

r

(A8)

where A, B, C, D and E are stress parameters to be
determined. The continuity conditions of stresses
and displacements of each cylinder at the interface and
the boundary conditions at the outer surface of the
matrix are

rr
&
(a, z) " r r

.2
(a, z) (A9)

r r
.2

(b, z) " rr
.1

(b, z) (A10)

r r
.1

(R, z) " 0 (A11)

u r
&
(a, z) " u r

.2
(a, z) (A12)

ur
.2

(b, z) " u r
.1

(b, z) (A13)

So we can obtain

A " k
1A

rz
&
#k

2A
rz

.1
#k

3A
rz

.2
(A14)

B " k
1B

rz
&
#k

2B
rz

.1
#k

3B
rz

.2
(A15)

C " k
1C

rz
&
#k

2C
rz

.1
#k

3C
rz

.2
(A16)

D " k
1D

rz
&
#k

2D
r

.1
#k

3D
r

.2
(A17)
E " k
1E

rz
&
#k

2E
rz

.1
#k

3E
rz

.2
(A18)
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where
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(A19)
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Appendix B. Coefficients gij
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"

2l
a Ak

1A
!

a2k
3A

b2!a2B (A30)
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a Ak
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g
21

"!

a2
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1

(m2
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g
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g
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1
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where

d
1

" (1#m
.
)AR2 ln

R

b
!

R2!b2

2 B (A36)

In all calculations, g
21

is much smaller than the
others. It is reasonable to neglect g in equation 14b
21
to simplify the solution.
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where g
2j

are given in Appendix B, and
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Combining Equations 19a and b yields a fourth
order linear differential equation
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From the boundary condition rz
.1

($(¸!l) )"r l
.1

,
the solution of Equation A44 is
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"B*cosh r
1
z#D* cosh r

2
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in which
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1
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k
11
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11
k
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(A46)
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22
![(k
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#k

22
)2#4k

12
k
21
!4k

11
k
22

]1@2

2 H
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(A47)

B* and D* are given by Equation 22a and b respec-

tively. It should be mentioned that r

1
and r

2
are real



values, which hold for all calculations in this paper. If,
in some other cases, the values of r

1
and r

2
are imagi-

nary, the solution of Equation A44 will be different.
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